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A Unified Program for Phase Determination,  Type 2P 

BY H. HAI~PT~_AN AND J. KARLE 

U.S. Naval Research Laboratory, Washington 25, D.C., U.S.A. 

(Received 16 September 1958) 

The new probability approach, in which the crystal structure is fixed and the Miller indices range 
uniformly but not independently over the integers, has yielded phase determining formulas with 
universal application to all the space groups. The formulation includes both the equal and unequal 
atom cases and takes special advantage of the symmetries characteristic of a particular space group. 

The present paper is concerned with the centrosymmetrie space groups comprising type 2P. A 
detailed procedure for phase determination in this type is described. 

1. I n t r o d u c t i o n  

The program initiated in a previous paper (Karle & 
Hauptman, 1959, hereafter referred to as 1P) is 
continued here. The application of the new probability 
methods, based on the Miller indices as random 
variables, is made to the space groups of type 2P 
(Hauptman & Karle, 1953, 1959). This type consists 
of the twenty primitive centrosymmetric space groups 
in the tetragonal system and the eight C-centered 
centrosymmetric space groups. I t  is to be emphasized 
that  all the space groups are treated here with primi- 
tive unit cells. For the conventionally primitive space 
groups the unit cell corresponds to that  found in the 
International Tables (1952). For the C-centered space 
groups the primitive unit cell is defined in our paper 
on the seminvariants (Hauptman & Karle, 1959). We 
present here a detailed procedure for phase determina- 
tion in the space groups of type 2P, which utilizes 
the same general formula and, at the same time, makes 
use of relationships among the structure factors 
characteristic of each space group. 

2. N o t a t i o n  

The same notation as appears in 1P (1959) is employed 
here. 

3. P h a s e  d e t e r m i n i n g  formulas  

3.1. Basic formulas 
4~a~ 

B2,0 : #~2 = 1-~ 

x (~pk2q0~+k)>k+R2,0. (3"1"1) 

(2~) a/~ ~ 

2(x+q+~+3)/epqrF(P2~l)T'(q-~-~l)_F(r~21)a~/2 

X <2pk~q(h1+k)~rO11~_h2+k)>k 
( 7 6  _ 1 / 2  

v 4 + #~+~#~'1'+~)+Ra, o. (3.1.2) 

3.2. Integrated formulas 

2(72 <AtkAt(h+k)>k+R~,o " (3"2"1) I~,o" # ~  = 1+  C~(t)a~ 

, , , ( 7 3  

I3, O: ' ~ h l ~ h 2 ~ h l + h 2  -- C 3 [~aa/2<AtkAt(hl+k)At(hl+h2+k)>k 
l / ]  4 

(~6 , (~/2 
- 2 o~/--~, o-: ( ~ 1  ~'1' + ~2~'2 '  

t p t !  t 

+ #hl+hJhl+h2) +Ra, 0" (3.2.2) 

In these formulas, p, q, r and t are restricted to be 
positive. Ordinarily they are given values in the range 
2-4. 

The remainder terms are given in the appendix § 6 
and in 1P (1959). Equation (3.1.1) or (3.2.1) serves to 
determine the magnitudes of the structure factors l e~l 
corresponding to the squared structure. By means of 
equation (3.1.2) or (3.2.2), the phases of these structure 

p 
factors ~h may be determined. In the next section we 
describe in detail how these equations are to be used 
for the various space groups included in type 2P, 
the conventionally primitive centrosymmetric space 
groups in the tetragonal system and the conventionally 
C-centered centrosymmetric space groups which occur 
in the monoclinic and orthorhombic systems (Table 1, 
p. 14, Monograph I, 1953 and Hauptman & Karle, 
1959). 

4. P h a s e  d e t e r m i n i n g  p r o c e d u r e  

I t  is assumed that  the ]J~hl have been calculated from 
the observed intensities. From these, the ]~hl are 
obtained by applying (3.1.1) or (3.2.1). In fact the 
I~hl SO computed may be made to cover a range of 
reflections extending beyond that  of the original set 
of observations. We are here concerned only with the 
larger I~h] and it is the phases of these whose values 
are to be determined. In the application of (3.1.2) or 
(3.2.2), the values of some [~i,"1 may be required. 
These may be obtained from (3.1.1) or (3.2.1) in 
which 8 is replaced by d ~' and d ~' by g~'", given 
sufficient data. 

In the phase determining procedures to be described, 
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Table 1 
'2 ' For each of the centrosymmetric,  conventionally C-centered space groups in the monoclinic system, the coefficients of ~h i~  h 

are given in columns two and three and the coefficients of ~hl~h2~hl+h~. are given in columns four and five, as they  would appear, 
in application, on the left side of (3.1.2) or (3.2-2), for selected values of h I and h~. The notation P(C2/m) refers to the primitive 

unit  cell, instead of the conventionally centered one (ef. Haup tma~  & Karle, 1959) 

h 1 

h = hz+h~. 

Coeff. of 

h~, hl +h, l~ h i , hl +h, l 
h~ + h, h i , 11 h i + h, h i , 1 

h, h, 0 h, h, 2l 

P(C2/m) -51 + 1 
P(C2/e) (--l)h (--I)~ 

¢ ! t 

Coeff. of ghlNh2ghl+h2 

½(h+~), ½(h+/¢), 0 hl, h ,  2~1 
½(h+k), ½(h+lc), 2l £1+h, £l+k,  2/1+2/ 

h, k, 2l h, k, 21 
h ~ k ( m o d 2 )  h~ = h - - / ~  (rood2) 

+I +I 
+ 1  + 1  

it will be seen tha t  the first steps concern the applica- 
tion of (3.1-2) or (3.2.2) with choices of indices which 
take full advantage of the space group symmetry.  
The final step is in the form of a general application 
which is the same for all the space groups. 

The specification of the origin is carried out in 
conformance with the seminvariant theory previously 
developed (Hauptman & Karle, Monograph I, 1953; 
1959). Origin specification in all space groups of a given 
type is the same. Thus, the method of origin specifica- 
tion for space group C2/m serves as a model for the 
remaining ones of type 2P.  

In  type 2P, the phases ~ u  which are structure 
seminv~riants are of the form, h - - k  (mod2) and 
1 -  0 (mod 2). In  other words h and k are both odd 
or both even and 1 is even. This means that  once the 
functional form for the structure factor has been 
chosen, the values of these phases are uniquely deter- 
mined by the intensities alone. I t  is of interest to note 
in the procedures to follow how a single equation 
(3.1.2) or (3.2.2) used in conjunction with relation- 
ships among the structure factors, characteristic of 
the particular space group and the chosen functional 
form for the structure factor, does, in fact, lead to 
unique values for the structure seminvariants. 

4-1. Monoclinic system, C-centered 

We are concerned here with space groups C2/m and 
C2/c. The special choices for h~ ~nd he, in addition 
to h~ = h~., are shown in the second and third rows 
of Table 1. By means of the first of these, hi = 
(h~, h~+~, I1) and h~. -- (h~+h, h~, l~), equation (3.1.2) 

'2 or (3.2.2) yields the value of @al,~l+iho~0 multiplied 
by the numerical coefficient given in the second 
column of Table 1. In  this way the value of the phase 
~h~0 is determined. Since h~ and ll may be chosen 
arbitrarily, ~ 0  may  possibly be determined in many 
ways. As always, the computations are performed for 
the larger values of 16~,2o~1. 

The second relationship, h~ = (h~, ~l+h,  l) and h~ = 
(~l+h, h~, l) leads to the value of the phase ~0~2~ by 
means of the numbers listed in the third column of 
Table 1 ~nd (3.1.2) or (3.2.2). 

We note that  ~ 0  and ~ are special types of 

phases which are seminvariants. By the use of these, 
it is possible to calculate the values of phases of a 
general type which are seminvariants q~hu(h=-k (mod2), 
1 ~ 0 (mod 2)), as is seen from columns four and five 
in Table 1. The phase q~h2 of column five is of the form 
~gga (g-----even) and may be obtained as in P1. The 
numbers in columns four and five are the coefficients 
of 6°;,16~26~+h 2 appearing in (3-1"2) and (3.2.2). 

For the purpose of specifying the origin, a linearly 
t semi-independent pair of phases ~'~ and ~ ,  having 

large corresponding ]#'l, is chosen. The values of these 
~ i  are then specified arbitrarily (i.e. 0 or ~), thus 
fixing the origin. Systematic application of equation 
(3-1.2) or (3.2.2) then permits the determination of the 
phases ~ of all the remaining #~, of interest, using 
previously determined or specified phases as necessary. 

An example of a linearly semi-independent pair of 
phases is ~g~g and ~0gg~ ( u -  odd). We recall tha t  
phases of the type ~ggg and q~uug may be obtained 
directly from the intensities before an origin specifica- 
tion has been made. Additional phases are obtainable 
from these by suitable choice of h 1 and h 2 in (3.1.2) 
or (3.2-2). I t  is readily seen tha t  any phase is acces- 
sible, once the origin specification has been made. 
This follows from the fact that  starting with the 
specified phases and those of the form ~ggg and ~ g ,  
it is possible to express an arbi trary vector h (whose 
components have any parity) in the form h l + h  ~ 
where ~h~ and ~h2 are known. For example, ~h = ~ug9 
is obtainable from suitable phases ~0hl = ~g~g and 
~h2 ---- ~ ,  where h = h~ +h~. The remaining types, 
q~uuu, ~guu and q~uau are similarly obtained. 

4.2. Orthorhombic system, C-centered 

The special choices of h 1 and h 2 characteristic of the 
C-centered centrosymmetric space groups of the 
orthorhombic system are shown in the second and 
third rows of Table 2. By means of these and (3-1.2) 
or (3.2.2), the values of many of the phases which 
are seminvariants may be found. The substitution of 
h 1 and h 2 of Table 2 into {3-1.2) or (3-2.2) 5delds, for 
the left sides, ~hl~h times the coefficients listed in all 
but  the last column. The numbers in the last column 
are the coefficients of 6~,16~2#~,1+h2, illustrating how a 
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Table 2 
' 2  ' For  each of the  cen t rosymmet r i c ,  convent ional ly  C-centered space groups in the  or thorhombic  sys tem,  the  coefficients of ~h lSh  

t t t are given in colnmns two to seven and  the  coefficients of O~hlO*Ch2~hl+h2 are given in co lumn eight,  as t h e y  would appear ,  in applica- 
tion, on the  left  side of (3.1.2) or (3.2.2). The no ta t ion  P(Cmcm) refers to the  pr imi t ive  un i t  cell, ins tead  of the  convent ional ly  

h 1 

h2 
h = hl-~-h 2 

cen te red  one (cf. H a u p t m a n  & Karle ,  1959) 

t 2 ! 
Coeff. of #hld~h 

h~,k1,1 h~, h l + h , l  1 h 1, f i l+h , l  h 1, hl-}-h,l h, k, l 1 h 1, h + h  1,11 
hl, kl, l hi+h, h 1, Z 1 hi+h, hp 1 hi+h, h 1, l h, k, Z 1 h+h 1, h 1, 11 
O, O, 21 h, h, 0 h, h, 21 h, h, 21 2h, 2k, 0 h, It, 0 

P(Cmcm) (--1)  ~ + 1  (--1)  t + 1  (--  1)/1 (--1)11 
P(Cmca) (--  1)h1+~1 +Z (--  1) h (--  1) 1 ( --  1) h ( --  1)h+k+ll (--  1)/1 

P(Cmmm) + 1  + 1  + 1  + 1  + 1  + 1  
P(Cccm) + 1 (--  1)ll (--  1) z (--  1)~ + 1 (--  1)zl 
.P(Cmma) (--  1)hl+Icl ( - -  1) h -~- 1 ( -- 1) h ( -- 1) h+]c -~- 1 
P(Ccca) ( -- 1)hl+tcl (--  1) h+~ ( -- 1) ~ ( -- 1) h+~ (--  1) h+t¢ (--  1)~1 

! ! p 

Coeff. of ~hl~h2~h 
½(h+~), ~(h+k), o 
½(h+k), ½(h+k), 2t 

h, k, 21 
h - -  k (rood 2) 

+ l  
+ 1  
+ 1  
+1 
+1 
+1 

general seminvariant phase may be obtained from 
special ones already known. 

The procedure is completed by specifying the origin 
and determining the remaining phases of interest in 
the same way as for C2/m and C2/c. 

4.3. Tetragonal system 

The special choices of h I and h e characteristic of the 
centrosymmetric space groups in the tetragonal system 
are shown in the first two rows of Tables 3 and 4. 
By means of these and (3.1.2) or (3.2.2), the values of 
many of the phases which are seminvariants may be 
found. The substitution of h 1 and h~ of Tables 3 
and 4 into (3.1.2) or (3.2-2) yields, for the left sides, 
~ ' 2  ~ ' h ~ h  times the coefficients listed in the appropriate 
columns. 

The procedure is completed by specifying the origin 
and determining the remaining phases of interest in the 
same way as for C2/m and C2/c. 

5. Concluding remarks 

I t  is clear from the foregoing that  this paper should 
be read in conjunction with 1P (1959). This avoids the 
necessity for redefining symbols and repeating remarks 
which are applicable to all the space groups. 

Tables 1, 2, 3 and 4 contain the main choices of 
interest among hi, h e and h = h 1 + h e for the particular 
sets of space groups involved. However, no at tempt 
has been made to be exhaustive and the investigator 
may well find additional relationships of significance 
in application. 

As a general rule, it is seen that  the phase deter- 
mining procedures offer many ways to calculate the 
value of a particular phase. This feature, together with 
the fact that  the calculation of the right sides of (3.1.2) 
and (3.2.2) should yield not only the sign of the left 
side, but also its magnitude, serves as a good internal 
consistency check as the phase determination proceeds. 

As mentioned in 1P (1959) the calculation of an 
~'~ map in the case of unequal atoms may be a 
particularly useful adjunct to the procedure since it 
exaggerates the Patterson peaks arising from the 
heaviest atoms. 

6. Appendix 

The correction terms for the formulas listed in § 3 
are given here and in 1P (1959). As a general rule, 
for larger N, these terms make a very small contri- 
bution. In any specific instance, the investigator can 
judge for himself their importance. 

We define: 

Table 3 
t 2 t The coefficients of 8hl$Ch given by  the  left  side of (3.1.2) or (3.2.2), for selected values of h 1 and  h 2, 
and  for each of four  space groups of the  t e t ragona l  sy s t em 

hl hlklZ ½(h+~), ½(h+k), 11 hktl ½(h+k), ½(h+k), Z 
h 2 hl[cll ½(h+]c), ½(h+k), [1 hkll ½(h+ic), ½(h+k), 1 

h = h 1 + h~ 0 0 2l h k 0 2h2k0 h k 2l 
h + k  --  0 (rood 2) h-l-k ~ 0 (rood 2) 

.P4/m -]- 1 + 1 + 1 + 1 

.P42/m + 1  (--1)11 + 1  (--1)  ~ 

.P4/n (--  1)hi+k1 (--  1)½(h+k) (--  1) h+~ (--  1)½(h-k) 
P42/n (--  1)hi+k1 (--  1)½(h-k)+/1 (--  1) h+Ic (-- 1)½(h÷k)+ l 
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+ 

°'s~/~(d~oo2z+ a+a,a+~,o+d~a+z,a+~,o) R (°) --(d%'o~+2#~+k X+a- o) 
,,, , g ' " - -  , , ,  0.~/2 

4 2 , 0  , , 

0.4 0" 4 

20.~/2 20.~/2 
a,0.1/~ (P+q-4)  d~'~5~"' ~. =,/2 (P+q-4)  5%d~,'' 

"2 ~4 
0.4 

4a~ ( ( p - 2 ) ( p - 4 ) +  (q-2) (q-4)) 5% 2 

20.s (p+q-4 )  
o'~0.  4 

0" 4 
+ ~ ( ( p - 2 ) ( q - 2 ) + 2 ( p - 2 ) ( p - 4 )  

+ 2 ( q - 2 ) ( q - 4 ) ) + . . .  , (6.1) 

+ 

0" 4 
4a-~ ( ( p - 2 ) ( p - 4 ) +  (q-2) (q-4)) 5% 2 

2a~ (p+q-4 )  
0"2 (74 

0" 4 
+ ~ ( ( p - 2 ) ( q - 2 ) + 2 ( p - 2 ) ( p - 4 )  

+ 2 ( q - 2 ) q - 4 ) ) + . . .  , (6.2) 

h 1 
h~ 

h = hl+h~. 

.P 4 /mmm 

.P4/mcc 
P4]nbm 
.P4/nno 
P4/mbm 
.P 4 / mnc 
P4/nmm 
.P4/ncc 
.P 4~Jmmc 
.P 4~/ mcm 
.P4Jnbc 
.P42/nnm 
P4~/mbc 
P4Jmnra 
P 4 fl nmc 
P4~/ncm 

h 1 

h = hx+h~. 

P4/mmm 
.P4/mcc 
P4/nbm 

r~t/rmo 
P4/mbm 
-P 4 / mnc 
P4/nmm 
P4/ncc 
-P4Jmmc 
P4e/mcm 
.P42/nbc 
.P4~Jnnm 
P4~/mbc 
P42/mnm 
P4Jnmc 
P4~/ncm 

Table 4 
'2 ' The coefficients of Oahld~h given by the left side of (3.1.2) or (3.2.2), for selected values of h I and h o, 

and for each of sixteen space groups of the tetragonal system. 

hklll Ihk 11 h~k~l ½(h+k), ½(h+k), l 1 h k ll 
hkzZ1 hik  ~ hlfQ1 ½(h+k), ½(h÷k), ~l h k Z 1 

2h 0 0 0 2k 0 0 02/ h, k, 0 2h2kO 
h + k  -- 0 (rood 2) 

+1  +1  +1  +1  +1 
(--1)h (--1)11 + I  + l  + l  
(-- 1)/q (-- 1)hl (-- 1)hl+/q (-- 1)½(h-k) (-- 1)h+k 
(-- 1)~1+ll (-- 1)hl+ll (-- 1)hl+~l (-- 1)½(h+~c) (-- 1)h+~c 
(-- 1)h+~l (-- 1)hl+~ + 1 + 1 + 1 
(-- 1)h+/q+ll ( -  1 )M+}+ll + 1 + 1 + 1 
(-- 1)h (-- I)} (-- l)h~+kl (-- l)½(h+~) (_ l)h+k 
(-- 1)h+ll (-- 1)~:+ll (-- 1)hl+~Cl (-- 1)½(h+~) (-- 1)~+k 
+ l  + l  +1  (--1)11 +1  

(-- l) 11 (-- ]-)11 + i (-- 1)11 + l 
(-- I)~I (-- l)hl (-- l)hl+kl (-- l)½(h+k)+ll (-- l)h+k 
(-- 1)M.+~l (-- 1)hl+11 ( _  1)hl+/c 1 ( _  1)½ (h+/c)+/1 ( _  1)h+/c 
(-- 1) h+M- (-- 1)~1 +~ + 1 (-- 1)~1 + 1 
(-- 1)h+/q+11 (-- 1)hi+h:+/1 + 1 (-- 1)~c+~1 + 1 
( -- I)~ ( -- I)~ ( -- 1)hl+kl ( -- i)½ (a+~)+~1 ( -- l)h+~ 
( -- 1) h+ll (-- 1)/c+q ( -- 1) hl+kl (-- l)½ (h+k)+/1 ( -- ] )h+lc 

h kal 
h kll 

2h02/ 

+1  
(-1)z 
(_1)h 

(_  1)h+l 
( -  1)h+kl 
(-- l)h+~+l 
(-  ~)~ 
( - I)~+~ 

+ i  
(_])I 
( -  ~)~ 
( -  1)~+~ 
( -  1)~+~ 
(-- 1)h+~q+t 
( -  ~)~a 
( - 1)~a+~ 

h~k~ ½(h+k), ½(h+k), 
~.~k~ ½(h+k), ½(h+k), 
02k2/ h, k, 21 

h + k  =_ 0 (rood 2) 

+1  + l  
(--1) I +l 
(--1)~ (--1)½(h+k) 

( -  1)~+t ( -  1)t(a-~) 
( -- 1)hl +~ ÷ 1 
( -- 1)hl +k+l ÷ 1 
(-- 1)hl (-- I)½ (h-k) 

(-- I)M+I (-- l)½(h-~) 
+1  (--1)I 

(-1)l (-1)l 
(-- l) } (-- l)½(h-/&+~ 
(-- 1)~+~ ( -- I)½ (h-~)+1 
(-- 1)hi+7¢ (-- 1) I 
( -- 1)hl+k+l ( -- 1)/c+l 
(-- l)hl (-- l)½(a-k)+z 
(-- 1)hl+l (-- 1)½(h-~)+l 

Table 4 (cont.) 

hi, h + h I, l 1 hl, h + h 1, l~ 
h + ~l, hi, ll h + hl, hi, Z 1 

h, h, 0 h, h, 0 

h 1, h + h  1, 1 
h + h  1, h a, 1 

h, h, 21 

h a, h + h  l, 1 
h + h  1, 7 h, 1 

h, h, 2l 

+1  +1  +1  +1  
( -  1)z~ ( -  1)z~ (-- 1)~ ( -  1)~ 
÷ ]  (--1) h (--1) h ÷ 1  

( -  1)~1 ( -  1)~+z1 (_ 1)h+t (_ 1)I 
( - 1 7  ( - 1 7  (-1)h ( -17  
(-- 1)h+/1 (-- 1)h+/1 (-- 1)h+/ (-- 1)h+/ 
( - 1 7  +1 +1 (_l )h 
( -  1)~+h ( -  1)h ( -  1)z ( -  1)J~+t 
( -  1)~ ( -  1)~ ( -  1)l ( -  1)l 

+ 1  +1  +1  +1  
( -  1/1 ( -  1)h+zl (_ 1)h+z (_ 1)z 
+1  (--1)h (--1)h -}-1 

(-- 1)h+ll (-- 1)h+h (-- 1)h+z (-- 1)h+l 
+1  +1  +1  +1  

(-- 1)h+ll (--1)ll (--1)l (-- 1)h+Z 
( - 1 p  +l +1 (_])h 
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R (°) . 0-]/2 . . . . . . . . .  
3,0 (~ 'oo  + #o2~o+ 3#oo2,+ #~+~, ~+~, o 

(74 

+ d~+~, ~+~, o+ 2d~+~,'~+~, o) 

60-1/3 30- 4 
0-2oP (p+q-4) ~;~#~"- ~ ((p-2)(p-4) 

+ (q_2) (q -4 ) )d~ ,  2+ 90---A ( p + q - 4 )  
0-2 0-4 

30- 4 + ~ ( ( p - 2 ) ( q - 2 ) + 2 ( p - 2 ) ( p - 4 )  

+ 2 ( q - 2 ) ( q - 4 ) )  + . . .  , (6"3) 

0-1/2 '2 '2 
(,(r- 2) d~h~+ ( p - 2 )  #h2 R (o) 

a 3, o--  80.2 

'2 
+ (q -2 )  ~'~h14_h2 ) ÷01 ' (6.4) 

where 

01 = - - -  0"113 # h l  (#h~l: kl,/,1-Jr-2/2 ÷ #h2"~-k'l"~-k2, ]tl+h~"{-"k2, '1 
0-4 

I I i  

÷ ~h2+#t+,~2, ~1+h~.+,%, h.) 

0-4 
+ ~ , , ,  

hl + h2+kl, hl +kl +k2,/2) 

0-1/2 '~ht+h2 ('~h't+h2, k14-~2,-1].+/2 ÷ '~h'2~-kl, hl+k2,/1+/2 
0-4 

+ d~h~+~,~+~,z~+z2) + . . .  , (6"5) 

-(o) al/~ 

where 

~2 

and 

~(o) 5/1;3, 

÷ (q_2)eZh~+h2) + ~ ,  (6"6) 

.,.~v 

0-4 
OX~ ''~ 

÷ h2+kl+k2, hl~-hg-J-k2, ll] 

0-4 

0-1/2 ~hl4-h2( ~h:'4-h2, kl+k2,11+12 
0-4 

tit If! 

+ d~h~+~2, h2*~t, ~+~2 + 5~h2+~, ~+~, ~+~2) +" • ", (6-7) 

3 0-1/2 

80-2 
_ _  ,,~,2 + ,  2" ,2 ((?'--2) hl ( p - - )  #h2 

+ (q_2) d~2 +h2) +~a , (6"8) 

where  

~3 = --  - -  
a P  ~ ,  - #  . . . . . .  

~hl( hl-{-2h2, kl, l l ÷ ~hl, kl-{-2k2,/l 0-4 
, , !  ttl 

÷ 3 ~hl,  kl, [14-212 ÷ ~hl+h2+k2, h2-Fk14-k2, [1 
vt! ~ t t !  

÷ ~h2+kl+k2, hlWh2Wk2, [1 ÷ hl~-h2+k2, h2+kl+k2, [1 

ttt 

0-4 
~vv ~vt 

÷ hl+hg-J-kl, hl+klTk2,12 ÷ ~hl+hs+kl,  hl+kl+k2,12 

÷ ~h~+z~+k~, h~+h~+Z~,, ~2) 
0-~/2 # ,  . # , , ,  

h14-h2 ( h14-~2, k14-k2, [14-12 
(74 

÷ ~'~hl+k2, h2+kl,/1+/2 ÷ h2+kl, hl+k2,114-12 
~ v ,  t , t  

+ ~h2+~, hl+~,~,+~ + d~h~+~, h~+~2, ~ ,+J  + . . . .  (6"9) 

Next  we define (where C,,(t) is replaced by  Cn): 

R (1) 0 - ~ / 2  . . . . . .  
2 , 0 -  (#'o'& + #~+~,~+~, o + #h+~. h+~, o) 

0-4 

4°'8 U2 (2C1_  C2) Ofh$eh,, 
C10-3 0-I/3 

0-4 
2vi 0-~ (8v,-6v~.+c~)#~2 

40- 6 
- -  ( 2 C 1 -  C~) 
C10-2 0-4 

0-4 ~ ((2C 1 _ C2)2 + 4C1 (8C 1 _ 6C~ + C3) ) + . . . ,  
+ 16C'2 a~ (6.10) 

R (1) 4 2,0 
0-~/2 ' "  2 ' "  (#oo2~+ d~h+k,~+k, 0) 
0" 4 

40-I/2 ( 2 c 1 - a 4 # ~ # ; , "  
+ C~0-~0-~/2 

0-4 ,2 40-e (2C1_C9) 2Cl0-~ ( 8C1--6C~ + C3)#h C~0-20-~ 

0-4 ( (2C_C2)2+4C~(8C_6C2+C3))+. . . ,  
+ 16-C~-~ (6-11) 

1/2 ,,, 

5~2, 0 0-4 
vt! 2 ..~pt, . + ~h+k, h+k, 0+ $~h+k,~+k, 0) 

120-p (2C~- 0 4 # ; , ~ "  
+ C~a20-~/2 

30- 4 
2Cla~ (sc~ - 6C2 + C3)#h 2 

3o" 4 
18a6 (2C1_C2)  + ( ( 2 C 1 - C 2 )  2 

C10-2 0-4 

+ 4C1(8C1-6C2+C3))+. . .  , (6.12) 
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3 3, 0 8C~o. 2 

R (1) -- a~/2 
a 3, o 8C~a2 

and  

(2C1 '2 '2 ,2 - C~) (#h~ + #h, + #n~+h2) + Q1, 
(6.13) 

(2c - + 

(6.14) 

R O) 3a~/2 ,2 . . . . .  ~ . 5 3,0 = 8 C ~ ,  (2C~--C=)(d~h~+~+$-hl+h=)+e3" 
(6.15) 

For  space groups  C2/m a n d  C2/c, we h a v e  

R~)0= R g ) ±  • i 2, 3" j 0 , 1  (6.16) 1 i, 0 7 - "  " " , ~ , ~ 

= R g ) + R  g ) + .  • i 2, 3; j 0 , 1  (6.18) A~!)0 1 i, 0 4 i, 0 " ' ,  = --~ • 

For  t he  s ix teen  r e m a i n i n g  conven t i ona l l y  p r i m i t i v e  
c e n t r o s y m m e t r i c  space groups  in  t he  t e t r a g o n a l  
sys tem,  we h a v e  

= R g ) ±  R g ) + . . . "  i 2, 3" j 0 , 1 .  (6-19) 1 , = , -- 

I t  is seen t h a t  t he  r e m a i n d e r  t e r m s  in  t h e  basic 
formulas  are especial ly  s imple  for t h e  special  case, 
p = q = r = 2. Fo r  this  case, t he  fo rmulas  r educe  to  
those  ob ta inab le  by  the  algebraic  m e t h o d s  p roposed  by  
us (1957). 

where  1R(2°)0, 1R(3°)0, 1R~1,)0 and  1R(31,)0 are def ined  in  
1P (1959). 

Fo r  t he  six conven t iona l ly  C-cen te red  centro-  
s y m m e t r i c  space groups of t he  o r t h o r h o m b i c  sys tem,  
we h a v e  

R~)0 = 1R~i)0+aR~)0+... ; i = 2, 3; j = 0, 1 .  (6.17) 

For  space groups  P4/m,  P42/m , P4/n,  and  P42/n , 
we h a v e  
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(Received 29 April, 1959) 

Crystals of benzenearsonic acid were grown by room 
temperature  evaporat ion of an alcohol solution. They 
appeared as t ransparent  or thorhombic prisms, elongated 
in the  direction subsequently designated as the c axis. 
The prism form {110) was well-developed, but  the ter- 
minal  faces occurred as curved surfaces so they  could not  
be identified. The dimensions of the uni t  cell, measured 
from rotat ion and Weissenberg photographs are as follows 
()l of C u K a  = 1"5418 A): 

a 0 = 14.90~-0.03, b 0 = 10.49±0.03, c o = 4"69=t=0.02 /~. 

The reported densi ty is 1-760 g.cm. -3 (Lange's Handbook 
of Chemistry, nin th  edition). The densi ty calculated for 
four molecules of C6H7OaAs per uni t  cell is 1.830 g.cm. -3. 
The observed extinctions (h00 present  only with h = 2n, 
0k0 present  only with k = 2n, and 001 present only with 
1 = 2n) determine the space group as P212121. Powder 
diffraction data  for benzenearsonic acid, obtained with 
a :Norelco diffractometer using nickel-filtered C u K a  
radiation, is given in Table 1. 

Table 1. Powder diffraction data for benzenearso~tic acid 

d (A) z l z  o d (A) i / z  o 

8.51 98 2-87 7 
6-07 15 2.82 5 
5.25 40 2-62 3 
4.94 100 2.52 1 
4.51 5 2.49 2 
4-29 5 2-42 2 
4.13 6 2.27 3 
3-97 4 2.25 3 
3"75 26 2"20 3 
3.62 20 2-15 2 
3.51 1 2.09 6 
3.41 3 2.03 3 
3.24 3 1.98 2 
3.18 22 1.94 3 
3.05 2 1.91 2 

Work on this substance is being continued to obtain 
the detailed structure of the crystal and the  molecule. 


