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A Unified Program for Phase Determination, Type 2P

By H. HauptMaAN AND J. KARLE
U.S. Naval Research Laboratory, Washington 25, D.C., U.S. 4.

(Received 16 September 1958)

The new probability approach, in which the crystal structure is fixed and the Miller indices range
uniformly but not independently over the integers, has yielded phase determining formulas with
universal application to all the space groups. The formulation includes both the equal and unequal
atom cases and takes special advantage of the symmetries characteristic of a particular space group.

The present paper is concerned with the centrosymmetric space groups comprising type 2P. A
detailed procedure for phase determination in this type is described.

1. Introduction

The program initiated in a previous paper (Karle &
Hauptman, 1959, hereafter referred to as 1P) is
continued here. The application of the new probability
methods, based on the Miller indices as random
variables, is made to the space groups of type 2P
(Hauptman & Karle, 1953, 1959). This type consists
of the twenty primitive centrosymmetric space groups
in the tetragonal system and the eight C-centered
centrosymmetric space groups. It is to be emphasized
that all the space groups are treated here with primi-
tive unit cells. For the conventionally primitive space
groups the unit cell corresponds to that found in the
International Tables (1952). For the C-centered space
groups the primitive unit cell is defined in our paper
on the seminvariants (Hauptman & Karle, 1959). We
present here a detailed procedure for phase determina-
tion in the space groups of type 2P, which utilizes
the same general formula and, at the same time, makes
use of relationships among the structure factors
characteristic of each space group.

2. Notation

The same notation as appears in 1P (1959) is employed
here.

3. Phase determining formulas

3-1. Basic formulas
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3-2. Integrated formulas
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In these formulas, p, g, and ¢ are restricted to be
positive. Ordinarily they are given values in the range
2-4.

The remainder terms are given in the appendix § 6
and in 1P (1959). Equation (3-1-1) or (3:2-1) serves to
determine the magnitudes of the structure factors |&|
corresponding to the squared structure. By means of
equation (3:1-2) or (3-2-2), the phases of these structure
factors @y may be determined. In the next section we
describe in detail how these equations are to be used
for the various space groups included in type 2P,
the conventionally primitive centrosymmetric space
groups in the tetragonal system and the conventionally
C-centered centrosymmetric space groups which oceur
in the monoclinic and orthorhombic systems (Table 1,
p. 14, Monograph I, 1953 and Hauptman & Karle,
1959).

4. Phase determining procedure

It is assumed that the |&,] have been calculated from
the observed intensities. From these, the |&y| are
obtained by applying (3-1-1) or (3-2:1). In fact the
|&4| so computed may be made to cover a range of
reflections extending beyond that of the original set
of observations. We are here concerned only with the
larger |&y| and it is the phases of these whose values
are to be determined. In the application of (3:1-2) or
(3-2-2), the values of some |8y | may be required.
These may be obtained from (3-1-1) or (3:2-1) in
which & is replaced by & and &' by &', given
sufficient data.

In the phase determining procedures to be described,
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Table 1

For each of the centrosymmetric, conventionally C-centered space groups in the monoclinic system, the coefficients of cg”'flé’l'l

are given in columns two and three and the coefficients of éo”llébl,lzév{ll +hy 8T given in columns four and five, as they would appear,

in application, on the left side of (3-1-2) or (3-2-2), for selected values of h; and h,. The notation. P(C2/m) refers to the primitive
unit cell, instead of the conventionally centered one (cf. Hauptman & Karle, 1959)

Coeff. of &42&

h, hyy Pyth L By, Byt

by, Rtk hy L Rtk Ry 1
h=h,+h, h, h 0 h, k2
P(C2m) +1 +1

P(C2fc) (=1 (=1

it will be seen that the first steps concern the applica-
tion of (3-1-2) or (3-2-2) with choices of indices which
take full advantage of the space group symmetry.
The final step is in the form of a general application
which is the same for all the space groups.

The specification of the origin is carried out in
conformance with the seminvariant theory previously
developed (Hauptman & Karle, Monograph I, 1953;
1959). Origin specification in all space groups of a given
type is the same. Thus, the method of origin specifica-
tion for space group C2/m serves as a model for the
remaining ones of type 2P.

In type 2P, the phases @, which are structure
seminvariants are of the form, A =k (mod 2) and
{=0 (mod 2). In other words % and % are both odd
or both even and [ is even. This means that once the
functional form for the structure factor has been
chosen, the values of these phases are uniquely deter-
mined by the intensities alone. It is of interest to note
in the procedures to follow how a single equation
(3:1-2) or (3-2-2) used in conjunction with relation-
ships among the structure factors, characteristic of
the particular space group and the chosen functional
form for the structure factor, does, in fact, lead to
unique values for the structure seminvariants.

4-1. Monoclinic system, C-centered

We are concerned here with space groups C2/m and
C2/c. The special choices for h, and h,, in addition
to h; = h,, are shown in the second and third rows
of Table 1. By means of the first of these, h, =
(By, By +R, 1) and hy = (R, +h, By, 1), equation (3-1-2)
or (3:2:2) yields the value of &2 .5, &1 multiplied
by the numerical coefficient given in the second
column of Table 1. In this way the value of the phase
@uio is determined. Since kb, and !, may be chosen
arbitrarily, ¢;5, may possibly be determined in many
ways. As always, the computations are performed for
the larger values of |&32&y|.

The second relationship, h, = (h,, &, +4, ) and h, =
(Ry+h, ky, 1) leads to the value of the phase g by
means of the numbers listed in the third column of
Table 1 and (3-1-2) or (3-2:2).

We note that ¢,z and @, are special types of

Coeff. of &4, 1y

$h+E), 3(h+E), 0 hy, Ry o2
$Ah+k), 3(h+E), 2 hy+h, byt &, 20+ 20

h, k, 21 h, k, 21
h =k (mod 2) hy =h =k (mod 2)
+1 +1
+1 +1

phases which are seminvariants. By the use of these,
it is possible to calculate the values of phases of a
general type which are seminvariants @, (h=k (mod2),
I =0 (mod 2)), as is seen from columns four and five
in Table 1. The phase gy, of column five is of the form
@499 (9 = even) and may be obtained as in PI. The
numbers in columns four and five are the coefficients
of &1 6En,Enysn, appearing in (3-1-2) and (3-2-2).

For the purpose of specifying the origin, a linearly
semi-independent pair of phases ¢, and g, having
large corresponding ||, is chosen. The values of these
@n; are then specified arbitrarily (i.e. 0 or m), thus
fixing the origin. Systematic application of equation
(3-1-2) or (3-2-2) then permits the determination of the
phases @y of all the remaining &y of interest, using
previously determined or specified phases as necessary.

An example of a linearly semi-independent pair of
phases is @y and @ggu (4 = odd). We recall that
phases of the type gy and @uu, may be obtained
directly from the intensities before an origin specifica-
tion has been made. Additional phases are obtainable
from these by suitable choice of h, and h, in (3-1-2)
or (3-2-2). It is readily seen that any phase is acces-
sible, once the origin specification has been made.
This follows from the fact that starting with the
specified phases and those of the form gg, and @uug,
it is possible to express an arbitrary vector h (whose
components have any parity) in the form h,+h,
where @p, and @p, are known. For example, gn = @,
is obtainable from suitable phases @n, = @,,, and
®¥n, = Puup» Where h = h;+h,. The remaining types,
Quun, Pouu aDd @ugy are similarly obtained.

4-2. Orthorhombic system, C-centered

The special choices of h; and h, characteristic of the
C-centered centrosymmetric space groups of the
orthorhombic system are shown in the second and
third rows of Table 2. By means of these and (3-1-2)
or (3-2-2), the values of many of the phases which
are seminvariants may be found. The substitution of
h, and h, of Table 2 into (3-1-2) or (3-2-2) yields, for
the left sides, &' &’ times the coefficients listed in all
but the last column. The numbers in the last column
are the coefficients of &'y, ny G,y ny, Llustrating how a
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Table 2

5565

For each of the centrosymmetric, conventionally C-centered space groups in the orthorhombic system, the coefficients of gl'flgl’l
are given in columns two to seven and the coefficients of é”‘;le,"l'lzé"l"l ths 87O given in column eight, as they would appear, in applica-
tion, on the left side of (3-1:2) or (3:2-2). The notation P(Cmcm) refers to the primitive unit cell, instead of the conventionally
centered one (cf. Hauptman & Karle, 1959)

Coeff. of &2&p

h, Bkl Ry Bgbhol o kg, itk U Ry, hibh,l

h, Bkl hyth, hy U hith, hy 1 hith, by 1
h=h+h, 0,02 h h O h, h 2 h  h 2
P (Cmem) (—1) +1 (—1)¢ +1
P(Cmea)  (—1ywta+ (=1 (—1) (—1)n
P (Cmmm) +1 +1 +1 +1
P(Ccem) +1 (—1)a (—1) (—1)
P(Cmma)  (—1yt+ey (=1 +1 (—1yt
P(Ceca) (— 1)ty (—1ywHt (=1)t (— 1)t

Coeff. of &4 Ep,n
By kU hy hthyl 3(A+E), 3(R+E), O

h, k, 1, h+hy hy U 3A+E), 3A+E), 2
2h, 2,0 h, B, O h, kE, 2

o~

h =k (mod 2)
(—1)k (—1)u +1
(—1)pttly (—1h +1
+1 +1 +1
+1 (—1)h +1
(— 1t +1 +1
(=1 (=1 +1

general seminvariant phase may be obtained from
special ones already known.

The procedure is completed by specifying the origin
and determining the remaining phases of interest in
the same way as for C2/m and C2/c.

4-3. Tetragonal system

The special choices of h; and h, characteristic of the
centrosymmetric space groups in the tetragonal system
are shown in the first two rows of Tables 3 and 4.
By means of these and (3-1-2) or (3-2-2), the values of
many of the phases which are seminvariants may be
found. The substitution of h; and h, of Tables 3
and 4 into (3:1-2) or (3-2-2) yields, for the left sides,
&y, &y times the coefficients listed in the appropriate
columns.

The procedure is completed by specifying the origin
and determining the remaining phases of interest in the
same way as for C2/m and C2/c.

5. Concluding remarks

It is clear from the foregoing that this paper should
be read in conjunction with 1P (1959). This avoids the
necessity for redefining symbols and repeating remarks
which are applicable to all the space groups.

Tables 1, 2, 3 and 4 contain the main choices of
interest among h,, h, and h = h, +h, for the particular
sets of space groups involved. However, no attempt
has been made to be exhaustive and the investigator
may well find additional relationships of significance
in application.

As a general rule, it is seen that the phase deter-
mining procedures offer many ways to calculate the
value of a particular phase. This feature, together with
the fact that the calculation of the right sides of (3-1-2)
and (3-2-2) should yield not only the sign of the left
side, but also its magnitude, serves as a good internal
consistency check as the phase determination proceeds.

As mentioned in 1P (1959) the calculation of an
&'® map in the case of unequal atoms may be a
particularly useful adjunct to the procedure since it
exaggerates the Patterson peaks arising from the
heaviest atoms.

6. Appendix

The correction terms for the formulas listed in § 3
are given here and in 1P (1959). As a general rule,
for larger N, these terms make a very small contri-
bution. In any specific instance, the investigator can
judge for himself their importance.

We define:

Table 3

The coefficients of gllleéﬂl’: given by the left side of (3:1-2) or (3-2-2), for selected values of h; and h,,
and for each of four space groups of the tetragonal system

h, Ryl 3(h+k), 3(R+k), 1 hkl, 3(h+k), §(h+K), 1

h, Pyl 3(h+E), $(h+k), Iy hkl, 3(h+E), 3(h+k), L
h=h;+h, 002! h k 0 2h2k0 h k 2l

h+k = 0 (mod 2) h+k = 0 (mod 2)

P4/m +1 +1 +1 +1

P4,m +1 (=1 +1 (—1y

Pd/n (—1)hytEy (—1)2¢tR) (— 1)tk (—1)2C—0k)

P4,ln (— 1)tk (—1)3G=k)+i (— 1)tk = 1)§(h+k)+l
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The coefficients of é’l'flé’l'] given by the left side of (3:1-2) or (3-2-2), for selected values of h, and h,,

h1
h2
h=h4h,

P4 [mmm
Pd[mecc
P4[nbm
Pd|nnc
P4|mbm
P4 [mnc
P4 [nmm
Pd4/nce
P4, /mme
P4,/mem
P4, [nbc
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P4,/mbe
Pd,/mnm
P4,/nme
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h,
hz
h=h;+h,

P4 [mmm
Pd/mcc
P4/nbm
Pdfnnc
P4/mbm
Pd/mnc
Pd/nmm
P4/nce
P4, /mmc
P4, /mem
P4,/nbc
P4, [nnm
P4,/mbc
P4,/mnm
P4,/nmec
Pd4,[ncm

Ryl A
hkyl, hEl
2R00 02k0
+1 +1
(—~1 (=1
(=17 (=1)m
(—=1)k1th (_1)h1+l1
(—1)r+ky (—1)p1+
(—1)rtk1+n (— Lyk1+etn
(=1)" (=1)%
(=1)rth (—1)kt+l
+1 +1
(=Dh (—1)a
(=11 (=1m
(—1)k1tl (—1)mth
(—1)htiey (—1)k1+k
(—1)htE1tly (— 1)h1+k+11
(=1)n (—1)k
(._1)h+ll (_1)k+l1
Ry kel (h+k), 3(h+k), 1
hykl 1(h+k), 3 (h+E), 1
02k21 h, k, 21
h+k = 0 (mod 2)
+1 +1
(—1y +1
(—1)k (—1)2+r)
(— 1)t (=1)t@-m
(=D)h+k +1
(—1)ym+k+ +1
(—1)m1 (—1)3-x)
(—=1)m+ (—1)20—k)
+1 (1)
(~ 1y (— 1
(— 1)k (— 1) r—k)+t
(—1)k+ (=1)3-x)+1
(=1)m+k (=1}
(—1)r1tk+l (— 1)kt
(—1)k1 (—1)3—x)>+1
(— 1yt (— 1)} 0—r)

Rkl
Bkl
0 021

+1

+1
(—1)r1+k1
(—1)h1t&1

+1

+1
(—1)h1+k1
(— 1)tk

+1

+1
(— 1)1tk
(— 1)h1+k1

+1

+1
(—=1)rtk
(_ 1)]L1+k1

Table 4 (cont.)

hlv h+h1’ ll
h+hy, by, 1,
h, h, O

+1
(=D
+1
(=1
(=1»
(—1)rth
(=1)r
(=1t
(=1
+1
(=1
+1
(—1)rta
+1
(—1)k+i
(=1

and for each of sixteen space groups of the tetragonal system.

030y
+ o5 (P-2a-D+2(0-2)(p—4)
O3
+2(g-2)g—-4)+..., (6-2)
3h+k), dh+k), 1 Rkl byl
$(h+k), 3(h+k), 1, A Rk
h, k, O 2r2K0 2r02!
h+k =0 (mod 2)
+1 +1 +1
+1 +1 (=1
(— 1)) (—1)htk (—1)*
(—1)3+r) (—1)htk (—=1)rtt
+1 +1 (— 1)h+k1
+1 +1 (= 1)htEr1+e
(—1)3e+e) (—1yh+k (— 1)1
(—1)r+r) (—1)h+E (— 1)Fr+t
(=1a +1 +1
(=11 +1 (—=1)
(—1)20+r)1y (—Dyktk (=12
(= 1)3rti)y (—Dyhtk (—1)n+l
(—=1)a +1 (—1)rtk
(—1)k+h +1 (— 1)htky+
(—1)3atE)+y (— 1)kt (—kt
(— 1) +r)+y (—1yn+k (= 1)1+t
By hethg, Ry, hthy, 1 By h4hy,l
h+hy, by, 14 h+hy, by, 1 hthy, by 1
h, hy O k, h, 21 h, h, 21
+1 +1 +1
(=1 (=1 (—1y
(=1 (—1)n +1
(=1 (=1t (=1)
(=1)+ (=1)k (=1
(—L)rtly (—1)rtt (—1)rtl
+1 +1 (=1)n
(=hh (~1) (=1)ntt
(= (=1) (—=1)t
+1 +1 +1
(_1)h+11 (— 1)+t (—1)
(—1)» (=1)k +1
(—=1)rthy (—1)rtl (—1)r+t
+1 +1 +1
(=1)a (—1) (=1)+l
+1 +1 (=T1)n
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Next we define (where Cr(t) is replaced by Ca):
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(@ ai® g 2 2
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For space groups C2/m and C2/c, we have
Ry = RPot...; i=2,3; j=0,1, (616)

where R, R, \RP, and ,RY, are defined in
1P (1959).

For the six conventionally C-centered centro-
symmetric space groups of the orthorhombic system,
we have

BPy = \BPo+:BP0+. .5 i=2,3; j=0,1. (6:17)

For space groups P4/m, P4,/m, P4/n, and P4,/n,
we have

A UNIFIED PROGRAM FOR PHASE DETERMINATION, TYPE 2P

R, = 1R£'f)o+4R§'f)o+ cees 1=2,3; j=0,1. (618)

For the sixteen remaining conventionally primitive
centrosymmetric space groups in the tetragonal
system, we have

BPy = \ BP0+ BPo+...; i =2,3; j=0,1. (619)

It is seen that the remainder terms in the basic
formulas are especially simple for the special case,
p = g =r = 2. For this case, the formulas reduce to
those obtainable by the algebraic methods proposed by
us (1957).
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Crystals of benzenearsonic acid were grown by room
temperature evaporation of an alcohol solution. They
appeared as transparent orthorhombic prisms, elongated
in the direction subsequently designated as the ¢ axis.
The prism form {110} was well-developed, but the ter-
minal faces occurred as curved surfaces so they could not
be identified. The dimensions of the unit cell, measured
from rotation and Weissenberg photographs are as follows
(A of CuKa = 1-5418 A):

@y = 14:90+£0-03, b, = 10-494+0-03, ¢, = 4-69+0-02 A .

The reported density is 1:760 g.cm.=® (Lange’s Handbook
of Chemistry, ninth edition). The density calculated for
four molecules of C;H,0,As per unit cell is 1-830 g.cm.™3,
The observed extinctions (k00 present only with A = 2n,
0k0 present only with k = 2n, and 00l present only with
I = 2n) determine the space group as P2,2,2,. Powder
diffraction data for benzenearsonic acid, obtained with
a Norelco diffractometer using nickel-filtered Cu K«
radiation, is given in Table 1.

Table 1. Powder diffraction data for benzenearsonic acid

d (4) 11, d (A) II,
8-51 98 2-87 7
6-07 15 2-82 5
525 40 2-62 3
4-94 100 2:52 1
4-51 5 249 2
4-29 5 242 2
413 6 2:27 3
3-97 4 2-25 3
315 26 2:20 3
3-62 20 2-15 2
351 1 2:09 6
3-41 3 2:03 3
3:24 3 1-98 2
318 22 1-94 3
3:05 2 1:91 2

Work on this substance is being continued to obtain
the detailed structure of the crystal and the molecule.



